Finding Nth Fibonacci number in logarithmic time
Rajiv Ranjan Singh / January 26, 2020
2 min read • ––– views
The Fibonacci numbers occur as the ratio of successive convergents of the continued fraction for $\varphi$, and the matrix formed from successive convergents of any continued fraction has a determinant of $+1$ or $-1$. $$\varphi=1+\cfrac1{1+\cfrac1{1+\cfrac1{1+\cfrac1{1+\ddots}}}}$$
The matrix representation gives the following closed-form expression for the Fibonacci numbers i.e. $${\begin{pmatrix}1&1\\ 1&0\end{pmatrix}}^n=\begin{pmatrix}F{n+1}&F_n\\ F_n&F{n-1}\end{pmatrix}$$
The matrix is multiplied $n$ time because then only we can get the $(n+1)^{th}$ Fibonacci number as the element at the row and the column $(0,0)$ in the resultant matrix.
If we apply the above method without using recursive multiplication of matrix, then the Time Complexity: $O(n)$ and Space Complexity: $O(1)$.
But we want Time Complexity: $O(log\ n)$, so we have to optimize the above method, which can be done by recursive multiplication of matrix to get the $n^{th}$ power.
Implementation of the above rule can be found below.
#include <stdio.h>
void multiply(int F[2][2], int M[2][2]);
void power(int F[2][2], int n);
/*
The function that returns nth Fibonacci number.
*/
int fib(int n) {
int F[2][2] = {{1, 1}, {1, 0}};
if (n == 0)
return 0;
power(F, n - 1);
return F[0][0];
}
/*
Optimized using recursive multiplication.
*/
void power(int F[2][2], int n) {
if ( n == 0 || n == 1)
return;
int M[2][2] = {{1, 1}, {1, 0}};
power(F, n / 2);
multiply(F, F);
if (n % 2 != 0)
multiply(F, M);
}
void multiply(int F[2][2], int M[2][2]) {
int x = F[0][0] * M[0][0] + F[0][1] * M[1][0];
int y = F[0][0] * M[0][1] + F[0][1] * M[1][1];
int z = F[1][0] * M[0][0] + F[1][1] * M[1][0];
int w = F[1][0] * M[0][1] + F[1][1] * M[1][1];
F[0][0] = x;
F[0][1] = y;
F[1][0] = z;
F[1][1] = w;
}
int main() {
printf("%d\n", fib(15));
/*
15th Fibonacci number is 610.
*/
return 0;
}